
CS612:
AI System Evaluation

Week 1: Introduction

Self Introduction
Sun Jun

Office: Room 4054, SCIS2

Email: junsun@smu.edu.sg

Homepage: https://sunjun.site

Telegram: @sunjunsmu

Slack: CS612@SMU

mailto:junsun@smu.edu.sg
https://sunjun.site
https://join.slack.com/t/smu-yza2517/shared_invite/zt-1ecupcp82-5BILgarpiXNQoSo6avohUA

Instructor
Pham Hong Long

Email: hlpham@smu.edu.sg

Homepage: https://longph1989.bitbucket.io/

Slack: CS612@SMU

3

mailto:hlpham@smu.edu.sg
https://longph1989.bitbucket.io/
https://join.slack.com/t/smu-yza2517/shared_invite/zt-1ecupcp82-5BILgarpiXNQoSo6avohUA

Background

AI Is Amazing

6

Disclaimer
By AI, we almost always mean deep learning with neural networks (and often
focus on supervised machine learning for classification, often on image data).

7

Dataset 1
The MNIST dataset

60000 training samples

10000 testing samples

The task is to recognize the digits.

State-of-the-art CNN models achieve an error
rate of 0.17%*.

*https://github.com/Matuzas77/MNIST-0.17

https://github.com/Matuzas77/MNIST-0.17

8

MNIST Model 1
A simple neural network

A fully-connected neural network

The input layer has 784 neurons (for 28*28 inputs).

There are 3 hidden layers, each with 10 neurons.

The activation function is ReLU.

The output layer has 10 neurons followed by a softmax
function.

It has an accuracy of about 92%.

Exercise 1
Follow the instructions to train the MNIST model.

1. Install VSC from https://code.visualstudio.com/
2. Follow the tutorial to install GitHub extension and clone this repository
3. Install Python from https://www.python.org/downloads/
4. Follow the instruction to install pip
5. Install additional library by executing command:

pip install torch torchvision autograd scipy matplotlib

6. Execute week1/exercise1/train_model.py to train the model

9

https://code.visualstudio.com/
https://docs.microsoft.com/en-us/learn/modules/introduction-to-github-visual-studio-code/
https://github.com/longph1989/CS612-SMU
https://www.python.org/downloads/
https://www.liquidweb.com/kb/install-pip-windows/

Issue 1: Robustness

10

In 2014, a group of researchers at Google
and NYU show that neural networks are
easily subject to adversarial attacks*.

One way of adversarial attack is to search
for a small noise such that once it is added
to a picture, the label is changed.

*”Explaining and Harnessing Adversarial
Examples”, Goodfellow et al, ICLR 2015.

Issue 1: Robustness

11

In 2017, a group of researchers at UC
Berkeley show that such adversarial
attacks are possible in the physical world.

The idea is to search for a small physical
noise such that once it is added to a
picture, the label is changed.

*”Adversarial Examples in the Physical
World. Kurakin et al, ICLR 2017.

Exercise 2
Execute week1/exercise2/attack_model.py from this repository to conduct an
adversarial attack.

* The attack is against the MNIST model in file week1/exercise2/mnist.pt

** Vary the value of eps (e.g. 0.01, 0.02, 0.05, 0.1, and 0.2) to see the effect on
the number of adversarial samples and their quality.

12

Do take a read of the code if you can. It is
not necessary to understand the code for
now. We will learn it properly later.

https://github.com/longph1989/CS612-SMU

Issue 2: Backdoors

13

In 2019, a group of researchers at NYU show
that it is fairly easy to embed backdoors in
neural networks.

One way of embedding backdoor is to poison
the training set, e.g., introducing dozens of
images with different people wearing this
glass labeled with “Milla Jovovich”.

The glass in this scenario is called the trigger.
The class “Milla Jovovich” is called the target.

It is a serious security threat in many ways.

Exercise 3
The model week1/exercise3/mnist2.pt is backdoored. The trigger is a 3*3 white square
at the top-left corner, index (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2).

Given week1/exercise3/test_backdoor.py, do the following:

1. Run the code as it is to test if the model works accurately on testing samples
without the trigger.

2. Add code to “stamp” the trigger with each sample in the test set (i.e. the TODOs).
3. Run the code to test the attack success rate.
4. [Optional] Test the attack success rate if the trigger is applied partially (e.g. by

setting one/two/three fewer pixels).

Consider how such backdoors can be detected.
14

ISSUE 3: Fairness
AI can be biased.

Example: the COMPAS model predicts
wrongly that black offenders are twice more
likely to reoffend within the following months
than white offenders.

Source: ProPublica

Fairness: Is it really relevant?
“Nothing is fair in this world. You might as well
get that straight right now”

(Sue Monk Kidd, The Secret Life of Bees)

“Do you truly believe that life is fair, Senor de la
Vega?

-No, maestro, but I plan to do everything in my
power to make it so.”

(Isabel Allende, Zorro)

Whether the world is fair or not is a different question
from whether we would like to have a fairer world.

https://www.goodreads.com/work/quotes/3275013
https://www.goodreads.com/work/quotes/1461252

Dataset 2
The Census Income Dataset

48842 samples

Each sample is a vector of 14 features associated with an individual.

The prediction task is to determine whether a person makes over 50K a year.

17

https://archive.ics.uci.edu/ml/datasets/census+income

In-Class Exercise 4
Given the model week1/exercise4/census.pt trained on the Census dataset,
take the samples in week1/exercise4/census/data and test if the model is fair
by flipping the gender feature (e.g. TODO at line 65) and observing whether
the prediction changes (i.e. compare the prediction before and after the
change).

Consider this: How do we define fairness in general and how do we evaluate it
systematically?

18

ISSUE 4: Privacy
Model stealing

It has been shown that it is fairly easy to
steal a model (e.g., through prediction
APIs, if the model is offered as a service).

The idea is to query the service multiple
times and then train a new model based
on the query answers.

One that achieves (close to) 100%
agreement on an input space of interest.

19

ISSUE 4: Privacy
Membership Inference Attack

Given a data record and black-box
access to a model, determine if the
record was in the model’s training
dataset is shown to be fairly easy.

*Membership Inference Attacks against
Machine Learning Models, S&P 2017.

20

How is this a privacy issue?

Dataset 3
The CIFAR-10 dataset

10 classes (airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks), each
class has 6000 images

Each sample is of size 32*32.

The prediction task is to determine whether
an image belongs to certain class.

The CIFAR-100 dataset is an expanded version
with 100 classes.

In-Class Exercise 5
Given the model week1/exercise5/cifar10.pt, take the 20 images from the
training set (e.g., train0.txt, …, train19.txt in the same folder) and the images
from the testing set (e.g., test0.txt, …, test19.txt in the same folder); and apply
the model to generate the prediction.

Observe the prediction, particularly the confidences (e.g. the maximum, and
top few and the entire distribution). Would you be able to tell whether an
image is in the training set or in the testing set based on the prediction only?

22

AI systems have issues.
We must evaluate AI systems!

23

Course Objectives

24

● Students will learn safety and security issues of AI systems.
● Students will learn how to conduct attacks on AI systems trained on

(mostly) image and (sometimes) text datasets.
● Students will learn state-of-the-art AI system evaluation methods for

robustness, backdoor, fairness, privacy and interpretability.
● Students will have hand-on experience on developing software toolkits for

evaluating AI systems.
● Students will learn how to improve AI safety and security through robust

training, backdoor removal, fairness and privacy enhancement.

Course Design

26

Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam

Assessment
Continuous assessment

Weekly Exercises (20%)

Project (40%)

Participation (10%)

Exam

Final exam (30%)

● It will be more on the concept and
understanding than programming.

● We will minimize requirement on
memorizing contents.

Class Format and Participation
Exercises

There will be in-class exercises, some of which
are to be submitted after class for grading.

Sample solutions will be provided.

Participation

Do clarify your doubts at any time.

1 point (of final grade) will be taken off for
each absence.

Fail if you miss 3 classes.

Communication
Off-Class

Email: junsun@smu.edu.sg

Telegram: @sunjunsmu

elearn:
https://elearn.smu.edu.sg/d2l/home/332449

In-class

Slack: CS612@SMU

Do talk to me at any time!

mailto:junsun@smu.edu.sg
https://elearn.smu.edu.sg/d2l/home/332449
https://join.slack.com/t/smu-yza2517/shared_invite/zt-1ecupcp82-5BILgarpiXNQoSo6avohUA

Submission Policy
1 hour late: 10%

3 hours late: 20%

5 hours late: 30%

7 hours late: 50%

> 7 hours late: 100%

Final Exam

We will follow university policy.

No makeup by default.

Made-Up Policy

31

Project (40%)
Group project (ideally 3 in a group, minimum 2, maximum 4).

You are encouraged to find your own group and we will help if you have
trouble identifying a group.

Initial project proposal is due in Week 5. High-level feedback will be provided.

Project is due at the end of Week 10.

Default Project: Backdoor Catcher
Given a (third-party trained) neural network, your task is to evaluate whether
there are backdoors embedded in the neural network.

● We will provide multiple backdoored (or not) neural networks trained on
the MNIST, CIFAR-10, and CIFAR-100 datasets.

● You as a team will provide us a backdoored neural network trained on the
same datasets.

● You will be evaluated in terms of (1) whether an alarm is triggered if there
is a backdoor; and (2) whether the backdoor trigger is successfully
identified.

Self-Initiating Project
If you would like to propose your own project, it is allowed given the following
conditions are satisfied.

● It is related to evaluate or enhance certain quality-aspects of neural
networks (e.g., robustness, backdoor-freeness, fairness, privacy,
interpretability and so on).

● It must be implemented and be applicable to standard neural networks
trained on datasets such as MNIST, CIFAR, IMDB reviews and so on.

Project Milestones
● Sunday of Week 3: Find your group.
● Sunday of Week 5: Submit your project proposal on which project to

tackle on and what is the overall approach (submit a 5-page report with a
timeline for completing the project).

● Sunday of Week 10: Submit the implementation together with a 10-page
report on your approach and experimental results on the provided tests
as well as additional ones if there is any.

35

Academic Integrity
All acts of academic dishonesty (including, but not limited to, plagiarism,
cheating, fabrication, facilitation of acts of academic dishonesty by others,
unauthorized possession of exam questions, or tampering with the academic
work of other students) are serious offences.

All work (whether oral or written) submitted for purposes of assessment must
be the student’s own work. Penalties for violation of the policy range from
zero marks for the component assessment to expulsion, depending on the
nature of the offence.

When in doubt, students should consult the instructors of the course.

?

Lessons from Program Evaluation

Programs Have Issues Too

39

Neural networks (to some extent, PyTorch or
TensorFlow programs) are a special class of
programs.

Programs similarly have bugs and we have
decades of experiences during with program
bugs.

We have developed many methods for
evaluating traditional programs. Can we apply
them to evaluate AI systems?

CVE-2014-016 (Heartbleed)

CVE-2014-627 (Shellshock)
How do we evaluate traditional programs?

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

Program Evaluation 1

40

Formal Methods

Step 1: Programmers develop a formal
specification of the program to be developed.

Programmers code (i.e., converting the
specification into code).

Step 2: Programmers formally verify their
code systematically against the formal
specification.

Historical attempts

Specification language: Z, CSP, VDM, …

Program contracts: Eiffel (programming
language), JML, SPEC#, …

Example

Program Evaluation 1

41

Formal Methods

Step 1: Programmers develop a formal
specification of the program to be developed.

Programmers code (i.e., converting the
specification into code).

Step 2: Programmers formally verify their
code systematically against the formal
specification.

Historical attempts

Formal verification: static analysis, model
checking and theorem proving

Example: Taint Analysis

All inputs are tainted;

A variable whose value depends on the input
directly or indirectly is tainted.

A critical function which reads a tainted
variable is risky!

The car-plate image is tainted; the SQL command depends on the car-plate
number identified from the image and therefore tainted. The SQL execution
function is critical and ALERT!

Program Evaluation 1: Example

42

Does It Apply to AI Systems?

43

Formal Methods

Step 1: Can we develop a formal specification
of the AI systems and evaluate, for instance,
neural networks against the formal
specification?

Example

What do we mean when we say a face
recognition system is working?

How do we define robustness of a face
recognition system?

How do we define backdoor-freeness of a
face recognition system?

The existing answers are to be
much improved.

Does It Apply to AI systems?

44

Formal Methods

Step 2: If we are able to define what it means
for a neural network to be correct, e.g.,
robust, can we formally verify a given neural
network is correct?

Example

Can we verify that a traffic sign reading
system (on a self-driving car) always reads a
stop-sign correctly?

Program Evaluation 2

45

Testing/Fuzzing

Some simple properties (such as no
unhandled runtime exception or violated
program assertions) are identified (either
automatically or manually).

Various approaches (e.g., manual testing,
fuzzing, and symbolic execution) are used to
test the program, aiming to achieve certain
program coverage.

Example

int div(int a, int b) {
if (b!=0) {

return a / b;
}

}

Property: no arithmetic overflow

Program Evaluation 2

46

Example

int div(int a, int b) {
if (b!=0) {

return a / b;
}

}

Property: no arithmetic overflow

Testing/Fuzzing

Randomly generate type-compatible input to the
function and check whether there is arithmetic
overflow.

Use branch coverage as an evaluation criteria,
e.g., a program whose line-coverage is 100%
is better evaluated than a program whose
line-coverage is 50%.

Is code coverage always a good indication
of the adequacy of the evaluation?

Does It Apply to AI systems?

47

Testing/Fuzzing

AI systems are typically evaluated using
accuracy on the testing set.

It is clearly not sufficient!

How do we generate additional test cases to
test neural networks?

How do we evaluate whether a neural
network has been tested adequately?

Program Evaluation 3

48

Code Review

The quality of a program is reviewed manually
through code review sessions with senior
programmers or project managers.

According to a study, a review of 200-400 LOC
over 60 to 90 minutes should yield 70-90%
defect discovery.

*** The 2018 State of Code Review

Example code review list

Does the code work? Is the logic is correct?
Is all the code easily understood?
Does it conform to the coding conventions?
Is there any redundant code?
Is the code as modular as possible?
Can any global variables be replaced?
Is there any commented out code?
Do loops terminate?
Can any of the code be replaced with library
functions?
……

Does It Apply to AI systems?

49

Code Review

Code review works for programs because
programs are rewritten by humans (based on
logic), which are naturally interpretable.

Neural networks are tuned through
optimization. Their functionality is encoded in
the numerical weights, which are typically
beyond human comprehension.

Can we achieve interpretability
for neural networks then?

Program Debugging

50

It’s all about causality

To debug and repair a system is to conduct
causal reasoning, i.e., to understand what is
the cause of the undesirable outcome and
imagine what would happen if we amend the
“cause” in certain way.

● We conduct causal reasoning through
data and control dependency analysis
based on program semantics.

● We repair programs by modifying the
failure-causing statements.

Example

int div(int a, int b) {
1. if (b!=0) {
2. return a / b;
3. }
4. }

Test case:
Input: a = -2147483648 and b=-1
Output: -2147483648

Reasoning: the output is produced by line 2
and thus changing line 2 could fix the bug.

Does It Apply to AI Systems?

51

Casualty analysis

Since a prediction is typically the collective
result of all neurons, every neuron is
responsible (for certain unexpected outcome).

How do we improve a neural network if it fails
our evaluation then?

We often re-train with additional data. But are
we sure that it will eliminate the wrong result
and improves the system as a whole?

Program Debugging vs. Model Re-training

52

Program Debugging

Causality analysis based on control and
data-dependency.

Fix the buggy statement and the bug is almost
certainly gone.

Model Re-training

No idea which neurons or inputs are
responsible.

Re-train the model with additional data.

Not sure if the “bug” is removed.

Can we do better?

Neural Networks vs Programs

Software may generate wrong results. Neural Networks may produce wrong
results.

Software may have backdoors. Malicious neurons may be embedded to
trigger malicious behavior.

Software may leak personal data.
An attacker can steal neural network
models or training data easily.

Software must be tested, verified or even
certified. So do AI systems.

53

Fundamental Theories Are Missing
Abstraction: Develop systematic methods for abstraction
of neural network and abstraction refinement.

Interpretability: Develop methods
which make human reasoning of
neural networks possible.

Causality: Develop methods for
extracting and quantifying causal
relations.

54

Trustworthy AI

55

We need

● Fundamental theories
● Scalable tools
● Certification standards
● AI development processes

Our Vision

Just like software bugs nurtured an industry
for software quality; there will be an industry
for AI quality assurance.

56

Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam

