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Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam



Recall: Robustness
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Outline
The question 

Given a deep learning model, how do we 
systematically evaluate its robustness?

To answer the question, we will discuss:

What is robustness?

Under what conditions do we evaluate the 
robustness, e.g., against an all-knowing 
attacker or one with limited knowledge?

What are the existing methods for evaluating 
robustness?



Example: Object Recognition 

Example: Toxicity classification  

Change idiot “Climate change is happening and it’s not changing 
in our favor. If you think differently you’re an idiot.” to idiiot 
changes the toxicity score from 80% to 20%.
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What is Robustness?
Defining what is 
robustness is not easy. 

Robustness issues are 
typically explained through 
obvious examples. 

It is not good enough if we 
would like to evaluate 
robustness properly.
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What is robustness?
Intuitive Definition

Given a neural network, its robustness is a 
measure of how easy it is to find adversarial 
examples (such as those you see on the 
previous slide) that are close to their original 
input.

Questions

1. What inputs do we consider in 
evaluating a model’s robustness?

2. How do we measure “closeness” and 
how “close” do we consider to be “close” 
enough?

3. How do we measure “easiness”?
4. How do we aggregate the evaluation on 

individual inputs? 
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What is robustness?
Question

1. What inputs do we consider in evaluating a 
model’s robustness?

Answers

Ideally, all valid inputs, including future 
unseen ones. 

The trouble is that it is impossible to have all 
valid inputs (e.g., consider for instance all 
valid faces or twitter comments).

Practical choices are the training set, the 
testing set, and samples that can be 
generated based on the training/testing set, 
e.g., through perturbation. 
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Perturbation
Given an input, we generate samples that are 
close to the input through perturbation, i.e., 
small changes that are expected to 
label-preserving. 

These perturbations are often 
domain-specific and task-specific.

Example: Images 

● Change a limited number of pixels
● Rotate the image for certain degree
● Change the lighting
● …

Example: Texts

● Replace a word with its synonym
● Introduce typo
● Add some word
● …

Are these always label-preserving?
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What is robustness?
Question

2. How do we measure “closeness” 
and how “close” do we consider to be 
“close” enough?

Answer: It is often domain-specific. 

For images, closeness can be defined in terms of pixel 
differences, e.g., L1-norm, L2-norm, and L∞-norm. 

Given two images (i.e., vectors of pixel values), L1-norm is 
the sum of the corresponding (absolute) pixel difference; 
L2-norm is the Euclidean distance; and L∞-norm is the 
maximum (absolute) pixel difference.

An input is considered “close” if the norm is within 
certain threshold.



Exercise 0
Given a 28*28 image from the MNIST dataset, what is the maximum number 
of images that are considered to be close according to the following norm?

● An L1-norm with a threshold (inclusive) of 2.
● An L2-norm with a threshold (inclusive) of 2.
● An L∞-norm with a threshold (inclusive) of 2.  
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Does Lp-norm capture the notion of 
“similar” images? If not, any better ideas?
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What is robustness?
Question

2. How do we measure “closeness” 
and how “close” do we consider to be 
“close” enough?

Answer: It is often domain-specific. 

For text, closeness can be defined in terms of the 
number of character differences or word differences. 
The latter can be further defined based on Euclidean 
distance in the embedding space.

An input is considered “close” if the difference is within 
certain threshold.

Does it capture the notion of similar 
texts? If not, any better ideas?
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What is Robustness?
Question 

3. How do we measure “easiness”?

Answer

Testing: We can measure how easy it is to 
attack using existing adversarial attacking 
methods, i.e., the easier to attack, the less 
robust. 

Verification: We can measure (a) how likely a 
perturbation would change the label, i.e., the 
more unlikely, the more robust; or (b) how 
much a perturbation is required to change 
the label, i.e., the larger the change is 
required to be, the more robust it is. 
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What is Robustness?
Question 

3. How do we measure “easiness”?

Testing

There are many attacking methods, which can 
be categorized into groups, such as white-box 
attacks, black-box attacks, and physical 
attacks. 

Consider the usage of your AI model and 
decide which attacker to use for evaluating 
your model.



Adversarial Attacks
White-box Attacks

The attacker is assumed to have full 
knowledge of the model, e.g., he can see the 
gradients.

Example

Szegedy’s L-BFGS attack, 2013
FGSM attack, 2014
Deadpool attack, 2016
JSMA attack, 2016
PGD attack, 2016
C&W attack, 2017
…

Black-box Attacks

The attacker observes only the output of the 
model (i.e., the prediction vector or 
label-only). 

Physical Attacks

The attacker is constrained to conduct the 
attack in the physical world.
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Szegedy’s L-BFGS Attack
Given an input x and a target label t, an optimization problem is formulated to 
search for a minimal distorted adversarial example x’, with the objective:

minimize c *||x−x’||2 + Loss(θ, x’, t)

where c is a constant, ||x−x’||2  is the L2 norm and Loss(θ, x’, t) is the loss to 
label t. Solving this optimization problem successfully means we find an x’ 
which is close to x and its loss to label t is small (and thus the label is likely t).
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Does it work with other kinds of norms?



FGSM Attack
Approach: Fast Gradient Sign Method

Optimization with the following objective:

maximize L(θ, x’, y) subject to ||x’ − x||∞≤ 𝝐 

where 𝝐 is a constant measuring closeness, y 
the label of x, ||x’−x||∞  is the L∞ norm, 
through one-step gradient descent as follows. 

x’ = x + 𝝐*sign(∇xL(θ, x, y))

Example
𝝐 = 0.1
x = [3.4, 5.7]
sign(∇xL(θ, x, y)) = [1, -1], i.e., increasing the 
first pixel increases the loss of y and 
increasing the second pixel decreases the loss
x’ = [3.5, 5.6].
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Is x’ guaranteed to be within the norm?



Exercise 1
The implementation in week2/exercise1/fgsmUntargeted.py (from this 
repository) is a un-targeted attack (i.e., an adversarial sample with a label 
different from the original label is generated) based on the FGSM method. 

1. Study the code of fgsmUntargeted.py so that you see how it works. 
2. Formulate the optimization problem if we would like to conduct a 

targeted attack, i.e., L(x’) = t for a specific target label t. 
3. Complete the TODO in week2/exercise1/fgsmTargeted.py accordingly 

(with one line) so that it is targeted. 
4. Test your program with different eps.
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https://github.com/longph1989/CS612-SMU
https://github.com/longph1989/CS612-SMU


PGD Attack
Approach: Projected Gradient Descent 

PDG is a multi-step version of FGSM.

x0 = x 

xt+1 = Clipx,𝝐(xt + α*sign(∇xL(θ, xt, y))) 

where Clipx,𝝐(...) is a function which projects 
the value to a value satisfying ||xt+1− x||∞≤ 𝝐; 
α is the step size, which is typically one pixel 
value.
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Example

Assume x0 = [123, 25] and α = 1 and 𝝐 = 2
sign(∇xL(θ, x0, t)) = [-1,1] 
x1 = Clip([123, 25]+[-1,1]) = [122,26].
sign(∇xL(θ, x1, t)) = [-1,1] 
x2 = Clip([122, 26]+[-1,1]) = [121,27].
sign(∇xL(θ, x2, t)) = [1,1] 
x3 = Clip([121, 27]+[1,1]) = [122,27].
…

*** Actually, the pixel values are typically 
normalized to be within 0 to 1 in practice.Why do we need Clip?



C&W Attack
Background

In 2014, the paper reporting the problem of 
adversarial perturbation was published.

Multiple papers claimed to successfully 
defend FGSM/PGD attack in 2015/2016. 

C&W was proposed to overcome almost all of 
those defenses in 2017. 

Approach: Carlini & Wagner Attack

The authors address the same optimization 
problem of L-BFGS attack by instead solving: 

minimize ||x − x’||2 + c · f(x‘, t)

Function f(x’,t) is the maximal difference 
L(i)-L(t) between any label i and the target 
label t. 

*** L(i) is the prediction confidence of label i.
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C&W Attack
Approach

The authors address the same optimization 
problem of L-BFGS attack by instead solving 
(based on ADAM optimization): 

minimize ||x − x’||2 + c · f(x‘, t)

Function f(x’,t) is the maximal difference 
L(i)-L(t) between any label i and the target 
label t. 

*** L(i) is the prediction confidence of label i.

Example

Assume L(x)=bird and t is dog. 

Initially 
L(x,bird)=0.5, L(x,cat)=0.3, L(x,dog)=0.2
f(x,t) = 0.3

After one round of optimization
L(x’,bird) = 0.4, L(x’,cat) = 0.25, L(x’,dog)=0.35 
f(x’,t) = 0.05  
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Execute week2/exercise2/fgsm.py, pdg.py, and 
cw.py (which attacks the 5 MNIST images in 
the folder week2/exercise2/toattack/). 
Observe the difference in the attacking time, 
and the generated adversarial samples. 

Summarize whether the attack is successful in 
the following table. Each entry should be of 
the form n/5 where n is the number of times 
the attack is successful. 

Exercise 2

21

eps FGSM PGD C&W

0.01

0.02

0.05

0.1

0.2



Text Adversarial Attacks
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Approach

Given a text t, find t’ such that t’ and t are 
similar and L(t’) != L(t).

Application 

NLP classification tasks such as sentimental 
analysis and neural machine translation.  

Question

How do we perturb the text t to generate 
natural similar text t’?

Any idea?



Text Adversarial Attacks
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Approach 1*

Character-level perturbation (which simulates 
natural typos)

● swap (e.g., noise => nosie), 
● random (e.g., noise => onise), 
● and typo (e.g., noise => noize).

*Adversarial Examples for Natural Language 
Classification Problems, ICLR 2018.

Example: Toxicity classification 

Change idiot “Climate change is happening 
and it’s not changing in our favor. If you think 
differently you’re an idiot.” to idiiot changes 
the toxicity score from 80% to 20%.

 

Are such attacks natural? Can you suggest a 
way to detect such attacks?



*Adversarial Examples for Natural Language 
Classification Problems, ICLR 2018.

Text Adversarial Attacks
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Approach 2* 

Select and replace a word with synonyms (i.e., 
words that are close according to the embedding 
distance and are not out of context according to 
a Google language model), and maximize the 
probability of a target label. 

Can you suggest a way to 
detect such attacks?



Text Adversarial Attacks
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Approach 3*

Use BERT to replace or insert words that fit 
better with the overall context. 

*BAE: BERT-based Adversarial Examples for 
Text Classification, EMNLP 2020.

Example

Are such attacks natural? Are such 
attacks easy to detect?

https://aclanthology.org/2020.emnlp-main.498
https://aclanthology.org/2020.emnlp-main.498


Blackbox Adversarial Attack
Question

What if the neural network model is not 
available to you, rather only an API is 
provided for you to query the model? 

The answer to the query may be either 

● the probability score of all classes, 
● the label and the confidence,
● or only the label. 

Example

How do you conduct an adversarial attack on 
Google Cloud Vision or Amazon Rekognition?

Try this yourself

https://cloud.google.com/vision
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https://cloud.google.com/vision


Blackbox Adversarial Attack
Approach: Local Substitute Model

1. The attacker collects a small set of 
samples X;

2. The attacker decides on a model 
architecture;

3. The attacker queries the API for the 
prediction of X; 

4. The attacker applies data augmentation 
to have more data;

5. The attacker trains a substitute model;
6. The attacker conducts white-box 

adversarial attacks.

Example*

Google Cloud Vision: 

88.94% misclassification under attack 

Amazon Rekognition

96.19% misclassification under attack 

* Practical Black-Box Attacks against Machine 
Learning, ASIA CCS’17
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https://dl.acm.org/doi/10.1145/3052973.3053009
https://dl.acm.org/doi/10.1145/3052973.3053009


Physical Attacks
Why are physical attacks relevant?

It may not be possible for the attacker to 
temper the image or text directly.

Example 

The image is captured through a camera and 
the access to the image is protected by the 
self-driving car system. The attacker is thus 
limited to tempter the road signs physically.

Physical Attacks are more challenging. 

The camera is a complicated system by itself 
(largely black-box to ordinary users) and it is 
hard to control what the resultant image 
pixels will be. 

Physical attacks must be “robust”, i.e., 
“reliable” with respects to camera angle, 
lighting, or in the presence of noises and 
camera-processing. 
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Conduct the following experiment to understand the difficulty of physical 
attacks.  

1. Apply week2/exercise2/cw.py to the 5 images in the folder 
week2/exercise2/toattack/ to generate 5 adversarial images.  

2. Take a photo of the 5 images from the screen;
3. Process the 5 photos so that it has the same format of the MNIST dataset;
4. Evaluate whether the 5 photos are adversarial samples. 

Exercise 3
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*Robust Physical-World Attacks on Deep 
Learning Visual Classification, CVPR 2018.

Physical Attacks
Approach 1*

Attack on road signs

1. Implement a L1-norm based attack on 
digital images of road signs to roughly 
find the region to perturb. 

2. Concentrate on the regions found in 
step 1, and use an L2-norm based attack 
to generate the color for the stickers. 

3. Print out the perturbation found in steps 
1 and 2, and stick them on road sign.
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*Synthesizing Robust Adversarial Examples, ICML 
2018, check out their Youtube Video

Physical Attacks
Approach 2*

3D adversarial objects

The idea is to search for an 
adversarial sample which is robust 
through a series of transformations, 
such as rescaling, rotation, lightening 
or darkening by an additive factor, 
adding Gaussian noise, and 3D 
rendering. 
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https://www.youtube.com/watch?v=YXy6oX1iNoA


Physical Attacks
Approach 3*

The idea is to 3D-print certain objects 
such that they are invisible to both 
LIDAR + Camera.

*Invisible for both Camera and 
LiDAR: Security of Multi-Sensor 
Fusion based Perception in 
Autonomous Driving Under 
Physical-World Attacks, S&P 2021 

32
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What is Robustness?
Question 

3. How do we measure “easiness”?

Answer

Testing: We can measure how easy it is to 
attack using existing adversarial attacking 
methods, i.e., the easier to attack, the less 
robust. 

Verification: We can measure (a) how likely a 
perturbation would change the label, i.e., the 
more unlikely, the more robust; or (b) how 
much a perturbation is required to change 
the label, i.e., the larger the change is 
required to be, the more robust it is. 
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Robustness Verification 
Probabilistic Robustness

How likely a perturbation (e.g., with a certain 
Lp-norm) would change the label?

That is, given a sample x, if we sample inputs 
within certain region around x, what is the 
probability of having an adversarial sample?

Pr(L(x’) != L(x)) subject to ||x’ − x||∞≤ 𝝐 

Approaches

A naive approach: sample a large enough 
number of samples within the region, and 
estimate the probability. 

A more sophisticated approach: use model 
counting techniques to count the number of 
adversarial samples.

Even more sophisticated approach: See, e.g.,  
“PROVEN: Verifying Robustness of Neural 
Networks with a Probabilistic Approach”, ICML 
2019.
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Robustness Verification 
Deterministic Verification

Given an input, how do we find out how large 
a change is minimally required to change the 
label?

Alternatively, given an input and a constant 
on the amount of “change”, how do we show 
that there is no adversarial attack?

class A

class B

class C

r1

r2
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Neural Network Verification
The problem of verifying robustness 

Given an input x, show that L(x+Δ) = L for all Δ 
(e.g., any pixel different satisfying a given 
L1-norm, L2-norm, and L∞-norm threshold or 
any label-preserving transformation such as 
rotation up to certain degree).

Example

Assume a toy image with two pixels [53,125]. 

Assume that the attacker is only allowed to 
change the image with the L∞-norm of 1. 

If we show that 
L([53,124])=L([54,124])=L([52,124])=
L([53,125])=L([54,125])=L([52,125])=
L([53,126])=L([54,126])=L([52,126]),

we show that there is no adversarial sample 
within a L∞-norm of 1 given input [53,125].

Can we exhaustively try all samples 
within the norm?
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Neural Network Verification
The problem of verifying robustness 

Given an input x, show that L(x+Δ) = L for all Δ 
(e.g., any pixel different satisfying a given 
L1-norm, L2-norm, and L∞-norm threshold or 
any label-preserving transformation such as 
rotation up to certain degree).

Approaches

Many approaches and tools have been 
developed.

● Reluplex
● Sherlock
● MIPVerify
● ReLUVal
● FastLin
● AI^2, DeepPoly, RefinePoly, PRIMA 
● …



Abstract Interpretation
The general abstract interpretation 
algorithm

1. Choose an abstraction domain. 
2. Replace initial variable values using 

their abstract values.
3. Abstract each statement in the 

program using its abstract 
interpretation.

4. Analyze the program based on the 
abstracted program.

Example

If we choose the abstraction domain to be the 
interval of the variables, e.g., variable k’s value is in 
the range of [1,10].

func foo (int x, int y) { //x, y in [int.Min, int.Max]
x = (x+1)%100; // x in [0,99]
z=y%100 + x; // y%100 in [0,99], z in [0,198]
assert(z<=200); 

}

Ergo: assert(z<=200) is always satisfied.

What if I abstract y%100 as [0,100]?



Abstract Interpretation
Choosing abstraction domains

There are many abstraction domains. 
Some are more precise than others.

More precise domains are powerful but 
more expensive to apply; less precise 
domains are less powerful but more 
efficient to apply.

Example

If we choose the abstraction domain to be whether 
a variable is non-negative, e.g., k>=0.

func foo (int x, int y) { //We have no idea.
x = (x+1)%100; // x>=0
z=y%100 + x; // y%100 >=0, z >= 0
assert(z<=200); 

}

We cannot conclude z<=200 is always satisfied. 
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DeepPoly
DeepPoly is one abstract interpretation method (and tool) for verifying neural 
networks. It focuses on feedforward neural networks, and CNN. 
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DeepPoly
Example

Assume an input [0,0]. 

Assume the L∞-norm bound 
is 1, i.e., the  two input i1 
and i2 can be any real value 
before -1 and 1.

Show that the output is 
always 1. 

A simple neural network with 2-hidden layers, 
assuming the activation function is ReLU.



DeepPoly abstracts 
each neuron with a 
tuple.

<
symbolic lower bound, 
symbolic upper bound, 
concrete lower bound, 
concrete upper bound
> 
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DeepPoly: Example



ReLU is not linear. How do we obtain the tuple for x5 and x6?

43

DeepPoly: Example



High-level idea 

Soundly approximate the activation function 
using a linear constraint.

Example:  ReLU(x) = max(0, x)

Concrete Example:

Abstract Interpretation using Linear Approximation
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There are often different ways of approximating nonlinear functions using 
linear constraints. For instance, the following shows an alternative way of 
approximating ReLU, i.e., xj <= 𝜆*xi + 𝜇 and xj >= xi. 

What is the resultant approximation of x5 and x6 using this approximation?

Exercise 4
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Exercise 4
For x5,

<
x5 >= ????????, 
x5 <= ????????,
l5 = ????????,
u5 = ????????
>
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For x6,

<
x6 >= ????????, 
x6 <= ????????,
l6 = ????????,
u6 = ????????
>

Looking at the results, which of the 
two abstractions is better?
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DeepPoly: Example

12

Moving on 

We have x7>=x5+x6, x7<=x5+x6.

What is u7?

Choice 1: u7=4 since x5<=2 and x6<=2. 

Choice 2: As x7<=x5+x6 
       <= (0.5x3+1)+(0.5x4+1)
       <=0.5(x1+x2)+1+0.5(x1-x2)+1
         =x1+2
       <=3

Thus, u7=3.
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DeepPoly: Example

12



DeepPoly: Example
Finally

x11-x12 >= x9+x10+1-x10

       =x9+1

     >=1

       >0

Thus, the label is always 1. 
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It may not always be successful!
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DeepPoly: Overall Approach
Approach

Abstract each neuron using linear constraints. 

Conjunct all constraints (all of which are linear 
constraints). 

Solve the constraint using a powerful linear 
constraint solver (such as Gruobi). 
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Example

(x1>=-1 && x1<=1 && x2>=-1 && x2<=1 &&

x3>= x1+x2 && x3 <= x1+x2 && 

…

x11>=x9+x10+1 && x11 <=x9+x10+1

x12>=x10 && x12<=x10)

=> x11 > x10



Exercise 5
Abstract all the neurons with the abstraction used in Exercise 4 and check 
whether you can prove that the output is always 1.
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Evaluating Robustness 
Testing

Given a neural network N and an input x, 
apply adversarial attacks to evaluate how easy 
it is to attach x.  

N’s robustness with respect to x is measured 
based on the attacking time, or success rate. 

Verification 

Given a neural network N and an input x, 
gradually increase the attacking budget (e.g., 
the L∞-norm bound) until adversarial attack is 
possible.

N’s robustness with respect to x is measured 
based on the attacking budget.

 

52

How do we aggregate the results on many inputs and obtain 
the overall robustness evaluation result then?



Evaluating Robustness 
Question

4. How do we aggregate the evaluation on 
individual inputs? 

Testing: Possible Answer 

Sample a set of inputs, evaluate N’s 
robustness with respect to each input x, and 
take the average (e.g., attacking time, or 
success rate) as a measure of the overall 
robustness.  

Verification: Possible Answer 

Sample a set of inputs, evaluate N’s 
robustness with respect to each input x, and 
take the minimal (attacking budget) as a 
measure of the overall robustness.  
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Do you think these answers are 
reasonable?



Conclusion
There are many adversarial attacking methods. 

PGD is typically considered to a powerful method for generating adversarial 
samples. 

We can evaluate robustness through either testing (a.k.a. attacking) or formal 
verification. The latter is limited to small (thousands of neurons) neural 
networks of certain kinds.  
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Remaining Questions
1. On testing robustness, how do we evaluate robustness against future 

unknown adversarial attacks?
2. On verifying robustness, how do we scale to practical neural networks 

such as GPT-3?
3. On defining robustness, is there a general definition of robustness for 

images, audios, texts and so on? 
4. Do we want to build AI systems that are as robust as humans’ sensory 

systems or better?  
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Exercise 1
Submit a zip file containing a report (word, or pdf) and a program showing 
your working of Exercise 0-5 to elearn (under Assignments and Exercise 1) by 
Sep 5, 2022 11:59 PM. 
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Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam


