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Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam
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Outline
Question 

If we suspect a model is embedded with 
backdoor(s), how do I mitigate the backdoor 
attack?

Approaches 

Input filtering

Input sanitization 

Sanitizing the model

Certified defense



Input Filtering
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Input Filtering
Training-time input filtering

If a training sample is determined to be 
suspicious (e.g., having weird patches, 
background patterns, or wrong labels), 
remove it from the training dataset. 

Inference-time input filtering

If a test sample is determined to be 
suspicious, do not serve it.

Question 

How do we determine whether a sample is to 
be filtered, i.e., suspended to be poisoned?

Answer 

We design or train a classifier to do that.

The classifier can be based on either the 
sample itself or how it is represented in the 
model trained on all training data.  



Testing-Time Input Filtering
Approach: Anomaly Detection

An attacked sample is often abnormal in 
some ways and thus we can prevent backdoor 
attack by disallowing abnormal inputs.  

How do we determine such an input is 
abnormal? By using a (decision tree) 
classifier*.

*“Neural Trojans”, ICCD 2017. 
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Examples



Anomaly Detection
Approach

To learn a classifier, we need abnormal 
samples. How do craft abnormal samples?

The authors crafted abnormal samples 
themselves. 

If an input is deemed an anomaly, it is 
discarded. 
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Example: Abnormal Samples

This work was done before BadNet and 
thus these are mostly OOD samples.



Training-time Input Filtering 
Approach

Poisoned sample and clean samples are 
represented different by the model training 
on all the training data. 

If we perform PCA analysis of training 
samples in each class (to see which part of a 
sample is informative for the prediction), the 
outliers are likely the poisoned sample. 
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Algorithm 

1. Train a model using all training data.
2. Conduct PCA analysis on all training data 

in each class. 
3. Remove outliers in each class according 

to the PCA analysis 
4. Train a model using the remaining data. 



Discussion
Do you think anomaly 
detection would be effective 
against the backdoor attacks 
that we discussed last week?

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐
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BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor



Input Sanitization
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Input Sanitization
Assumption

The performance of a backdoor is sensitive to 
modification of the trigger, i.e., perturbing the 
trigger often reduces the success rate of the 
trigger significantly.

We can apply simple transformation such as 
left-right flipping and padding after shrinking 
to reduce the effectiveness of the trigger*.

*“Neural Trojans”, ICCD 2017.

Training-time input sanitization

Apply some form of transformation (hopefully 
to disable the trigger) before using the sample 
for training the neural network. 

Inference-time input sanitization

Apply some form of transformation (hopefully 
to disable the trigger) before feeding the test 
sample into the neural network. 

Do you think that backdoor triggers 
are sensitive to perturbation?



Preprocessing through Autoencoder
Intuition 

We use an autoencoder to encode and 
decode the sample, and hopefully the trigger 
is disabled somehow. 

Approach

The training objective is to minimize the mean 
square error between the input and output. 
Here are some before/after samples.

During inference, an input is encoded and the 
decoded sample is fed into the neural 
network.   
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Exercise 1
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Given week5/exercise1/sensitive.py, perturb the trigger in two different ways 
and measure the change in attacking success rate.

● Change the trigger itself (e.g., increasing/reducing the size of the 
white-patch)

● Shift the trigger to different positions



Discussion
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BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Based on your understanding, consider 
whether preprocessing through 
autoencoder would be effective against 
the range of backdoor attacks that we 
discussed last week.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐



STRIP
Assumption

If we modify a benign sample, the prediction 
is likely to change.

If we modify an attacked sample, the 
prediction is like to remain the same.

Example

We superimpose two images, one at the 
bottom (b) and the other at the top (t).
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What do you think of this assumption?



STRIP
If the distribution of the prediction remains more or less the same, the input is 
considered to be attacked and discarded. 
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Discussion
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BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Based on your understanding, consider 
whether STRIP would be effective 
against the range of backdoor attacks 
that we discussed last week.

Fill the table.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐



Februus
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Observation 

The logits (which can be regarded as the 
extracted features) generated from benign 
inputs and attacked inputs are very different.

*Februus: Input Purification Defense Against 
Trojan Attacks on Deep Neural Network 
Systems, ACSAC 2020

CIFAR-10 visualized using t-SNE



Februus
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Assumption

In the presence of a trigger, some region will 
contribute significantly to the prediction. 

Approach

1. Identify the region which contributes the 
most to the prediction using Grad-CAM 
(a.k.a. a heat map).

2. Remove the region and apply GAN to 
restore the removed region.  

3. Feed the restored image into the neural 
network. 



Februus: Illustration 



Discussion
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BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Based on your understanding, consider 
whether Februus would be effective 
against the range of backdoor attacks 
that we discussed last week.

Fill the table.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐



Sanitizing The Model
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Retraining
Intuition 

Based on the phenomenon of catastrophic 
forgetting, fine-tuning the given model with 
some clean labeled data helps to eliminate 
the backdoor. 

*“Neural Trojans”, ICCD 2017.

Catastrophic Forgetting

“is the tendency of an artificial neural network 
to completely and abruptly forget previously 
learned information upon learning new 
information.”

Example: A neural network trained to 
recognize digit “1” and “2” will perform terribly 
on classifying “1” and “2” after fine-tuned to 
recognize “3” and “4”.
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This works if the neural network is 
retraining on OOD samples. 

https://en.wikipedia.org/wiki/Artificial_neural_network


Retraining
Approach

Sample (x, y) from a distribution which is 
supposed the same as the training dataset.

Train the given neural network with the cross 
entropy loss.

Minθ LCE(θ, x, y)

*“Neural Trojans”, ICCD 2017.

Illustration 

24



Exercise 2
Given week5/exericse2/badnet.pt which is a backdoored network, 
week5/exericse2/retrain.py implements the retraining approach, measure the 
accuracy and attack success rate after retraining.  

Can you explain why this result is as what it is?
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Neural Attention Distillation
High-level Idea*

To further enhance the effect of retraining 
(i.e., forgetting about the backdoor) through  
knowledge distillation. 

*“Neural attention distillation: Erasing 
backdoor triggers from deep neural 
networks,” ICLR 2021.

Knowledge Distillation 

It is proposed as a way to reduce model size. 
It has the effect of pruning certain 
unnecessary details. 
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Neural Attention Distillation
Approach

Given a model N (which is believed to be 
backdoored) and a set of self-collected clean 
samples, 

1. finetune N with the clean samples to 
obtain a model M.

2. take M as the teacher model and N as 
the student model and apply knowledge 
distillation.

Illustration 

27



Neural Attention Distillation
Approach

The distillation is applied to optimize the 
student model (i.e., the backdoored model) 
with the objective of minimizing

● the cross entropy on the clean samples, 
● and the difference between the teacher 

model and student model. 

Illustration 
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There are some details on how to 
define the difference in the paper.



Exercise 3
Do you think NAD would be 
effective against the backdoor 
attacks that we discussed last 
week?

Fill the table and explain why 
it is or isn’t effective.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐
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BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor



Adversarial Unlearning Of Backdoors
High-level Idea*

Making retraining more effective in terms of 
removing backdoors in the model.

The proposal is inspired by adversarial 
training.

* “Adversarial unlearning of backdoors via 
implicit hypergradient,” ICLR 2022.

Approach 

Assume there is a small set of clean samples 
(xi,yi) * n. Retrain the given model with the 
following objective.

Minθ Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

where 𝛿 is intuitively an arbitrary trigger; 
||𝛿||<ε defines the space of all possible 
triggers. 
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How do we define ||𝛿||<ε in general? 



Adversarial Unlearning Of Backdoors
Approach 

Assume there is a small set of clean samples 
(xi,yi) * n. Retrain the given model with the 
following objective.

Minθ Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

where 𝛿 is intuitively an arbitrary trigger; 
||𝛿||<ε defines the space of all possible 
trigger. 

Detail 1: ||𝛿||<ε can be defined based on, 
for instance, L2-norm or other norms.  

Detail 2: Note that the objective function is 
un-targeted. This is because in general, we 
don’t know what is the attack target.

Detail 3: Solving the inner max problem is 
highly nontrivial. It is basically the problem of 
generating (untargeted) universal adversarial 
perturbation (UAP). 
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Adversarial Unlearning vs Adversarial Training
Adversarial Unlearning

Retrain the given model with the following 
objective.

Minθ Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

Adversarial Training

Train a model with the following objective

Minθ MaxD(x,x’)<ε L(θ, x’, y)

Difference 

Adversarial unlearning aims to minimize the 
maximize effect on all samples, whereas 
adversarial training focuses on one sample at 
a time. 

In adversarial training, we approximate 
MaxD(x,x’)<ε L(θ, x’, y) through adversarial attack. 
In the problem of approximating 

Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n  

is much harder. 

32



Discussion
Do you think adversarial 
unlearning would be effective 
against the backdoor attacks 
that we discussed last week?

Fill the table.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐
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BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor



Trigger Synthesis based Defense 
High-level Idea

If we know what is the backdoor trigger, we 
can most certainly defend backdoors much 
more effectively. 

How do we synthesize the trigger then? 
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Example 

If we know what is the trigger, 

● we can simply discard those 
trigger-containing input either during 
training or testing;

● we can remove the trigger and restore 
the image during testing;

● we can precisely remove the backdoor 
through retraining or unlearning. 
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Neural Cleanse
Overall Approach

Given a neural network N, it aims 
to provide an end-to-end solution 
for the problem.

1. Detecting backdoor
2. Synthesizing the trigger 
3. Removing backdoor

*Neural Cleanse: Identifying and 
Mitigating Backdoor Attacks in 
Neural Networks, S&P 2019.

High-level Intuition 

Backdoors are shortcuts between classes.
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Neural Cleanse
Approach

1. Detecting backdoor

For each label yt, generate a minimal 
trigger 𝛿t through optimization which 
changes the label of any sample to yt;

If there exists one trigger 𝛿t which is 
significantly smaller (e.g., in terms of 
number of pixels or character changes) 
than the rest, there is a backdoor with 
target yt. 

How to generate the minimal trigger?

A generic trigger is defined as:

x’ = x + ɑ*𝛿

Solve the following optimization problem for 
all x in a set of clean samples.

minɑ,𝛿 L(θ, N(x+ɑ*𝛿), yt)+𝜆*|ɑ|

Do you think step 1 is reasonable?
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Neural Cleanse
How to detect triggers that are 
significantly smaller?

Using the Median Absolute Deviation (MAD).

Given x1, x2, ..., xn, 

xm = median of x1, x2, ..., xn

MAD = median(|xi-xm|)

Anomaly index of xi = |xi-xm|/MAD

if xi is small with anomaly index > 2, infected.

Example

Data: (1, 1, 2, 2, 4, 6, 9)

Median: 2 

Absolute Deviation: (1, 1, 0, 0, 2, 4, 7) 

MAD: 1 (because the sorted absolute 
deviations are (0, 0, 1, 1, 2, 4, 7)).

Anomaly index of 6: |6-2|/1 which 4. 
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Neural Cleanse
Approach

2. Synthesizing trigger

The 𝛿t identify in the first step is the 
trigger and the target is yt.

We can note the patterns of neuron 
activation (top 1% of the logits layer) in 
the presence of the trigger and filter 
inputs accordingly. 

Examples

Notice how the synthesized trigger 
is different and has smaller norm?
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Neural Cleanse
Approach

3. Removing backdoor

One idea is to disable neurons (at the 
logits-layer) that are most activated in 
the presence of the trigger. 

The other is neural unlearning, i.e., 
finetuning with samples “stamped” with 
the trigger and the correct label. 

Examples

Ideally, if the trigger is perfect, retrain with the 
following. 

Label: 2 7Label:7 Label: 2 7
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Neural Cleanse: Performance
Experiments against BadNet and Trojaning attack.



Discussion
Do you think Neural Cleanse 
would be effective against the 
backdoor attacks that we 
discussed last week?

Fill the table

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

41

BadNet ⭐⭐⭐⭐⭐
Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning ⭐⭐⭐⭐⭐
TrojanNet

Physical Attack

“Natural” Backdoor



Certified Defense 
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Certified Defense
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Question

All the above-discussed approaches are 
considered heuristics, i.e., they have decent 
performance in some settings but they don’t 
provide any formal guarantee. 

How to certify that a neural network is free of 
backdoors?

Answer

There are a few initial attempts and a lot are 
to be done yet. 

● Verifying backdoor-freeness*
● Certified backdoor-freeness through 

randomized smoothing

*“Verifying Neural Networks Against Backdoor 
Attacks“, CAV 2022



Verifying Backdoor-Freeness
Problem 1

Given a neural network N, a set of images X, a 
target yt, and a maximum set of trigger pixels, 
the problem is to show that there does not 
exist a backdoor trigger 𝛿 such that N(x+𝛿) = yt 
for all x in X.
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Trump

This problem assumes that triggers must be 
100% effective on X.



Verifying Backdoor-Freeness: Part 1
The problem

0 <= trg <= 255 &&

N([trg, 5]) = 1 &&

N([trg, 10]) = 1 

Toy Example 

X has two pictures, each with two pixels. 

{[3,5], [1,10]} 

There are two labels {0, 1}. The target is 1. 

Trigger is a value for the first pixel. 
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We can solve the constraint if we can 
abstract the neural network.



Example 

ReLU(x) = if (x>= 0) { x } else { 0 }

Abstract Interpretation
High-level idea 

Abstract each function using a simpler one 
(such as a linear one).
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We have seen this in verifying robustness.



Constraint Solving
The problem

0 <= trg <= 255 &&

N([trg, 5]) = 1 &&

N([trg, 10]) = 1 

Toy Example 

X has two pictures, each with two pixels. 

{[3,5], [1,10]} 

There are two labels {0, 1}. The target is 1. 

Trigger is a value for the first pixel. 
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N([trg, 5]) and N([trg, 10]) are replaced with 
some abstract linear constraints. The 
problem is then solved using a linear solver. 

If UNSAT, there is no backdoor. 



Verifying Backdoor-Freeness: Performance
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Experiment***

MNIST 

Feed-forward neural 
network

***“Verifying Neural 
Networks Against 
Backdoor Attacks“, CAV 
2022.



Exercise 4
Applying the 
above-discussed 
approach to verify 
whether there exists a 
backdoor for inputs 
[-1,0], [0,1], and [1,-1], 
where the trigger is 
restricted to change i2 
with the range of [-1,1] 
and the target is 0.
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Label 1

Label 0

Hint: refer to Slide 49 of week 2



Verifying Backdoor-Freeness
Problem 2

Given a neural network N, a target yt, 
and a maximum set of trigger pixels, the 
problem is to show that there does not 
exist a backdoor trigger 𝛿 with a success 
rate of at least Pr.

This is more interesting since backdoors 
in practice are hardly perfect.
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Verifying Backdoor-Freeness: Part 2
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There is a backdoor attack with success rate 
at least Pr.

Given K random images, the probability of 
having a backdoor attack is no less than PrK.

Given K random images, the probability of 
not having a backdoor attack is no more 
than 1-PrK.

Given K random images, the probability 
of not having a backdoor attack is more 
than 1-PrK.

Given K random images, the probability of 
having a backdoor attack is no more than 
PrK.

There is no a backdoor attack with success 
rate at least Pr.



Verifying Backdoor-Freeness: Part 2
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Pick K random images

Verify Problem 1 on the K images

No attack

Verified Falsified

Yes attack
Success Rate >= 
Pr on all images 

Sufficient evidence 
accumulated

Otherwise Otherwise



Verifying Backdoor-Freeness: Performance
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Experiment***

MNIST 

Feed-forward neural 
network

***“Verifying Neural 
Networks Against 
Backdoor Attacks“, CAV 
2022.



Randomized Smoothing for Backdoor-Freeness
Recall randomized smoothing

During training, add a noise layer (to induce 
noises following a Gaussian distribution). 

During inference, query the model many 
times and output the most frequent 
prediction. 

Randomized smoothing allows us to certify 
robustness to some extent. 

Randomized smoothing can be used to 
certify backdoor-freeness

If we certify that N is robust given x, i.e., N(x) 
remains the same within certain radius of x, 
we can conclude that any backdoor trigger 
within the radius is ineffective, i.e., we certify 
the backdoor-freeness.

Only this time we need a much bigger radius! 
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How practical is to define the radius for a 
backdoor attack?



Randomized Smoothing 
Algorithm 

During training, add a noise 
layer (to induce noises 
following a Gaussian 
distribution). 

During inference, query the 
model many times and 
output the most frequent 
prediction. 

N(x) = arg maxc P(N(x+δ)=c)
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The blue parts are from ordinary training; 
the red parts are the new ones.



Randomized Smoothing for Backdoor-Freeness
Experiments***

Models: MNIST and CIFAR-10

Triggers are assumed to be no larger than: 
5*5 for MNIST and 10*10 for CIFAR-10.

Backdoor attack is assume to data poisoning 
(i.e., BadNet). 

***“Certified robustness of nearest neighbors 
against data poisoning attacks,” AAAI 2022.

Performance

MNIST: Certified accuracy drops to about 70% 
assuming 500 training samples are poisoned.

CIFAR-10: Certified accuracy drops to about 
30% assuming 200 training samples are 
poisoned.
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There is still some ways from being 
practically relevant. 



Conclusion
Existing input filtering and sanitization, and model sanitization approaches 
have decent performance against common backdoor attacks.

There are adaptive attacks that might comprise such defense still.

Certified defense is nowhere near practically useful yet.  
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Assignment Exercise 4
Submit a zip file containing a report (word, or pdf) and programs showing your 
working of Exercise 1-4 to elearn (under Assignments and Exercise 4) by Sep 
26, 2022 11:59 PM. 
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Project Proposal
By Sep 25, submit your project proposal on 

● which project to tackle on (note: if it is the default project, make it brief; 
otherwise, explain properly what is the background and what is the 
problem to be addressed) 

● what is the overall approach (note: the approach certainly can change 
over time; do have one backup approach here though)

Submit a maximal 5-page report with a timeline for completing the project. 
This report counts 10% of the project. 
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Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam


