
AI System
Evaluation

Week 5: Mitigating AI Backdoors

2

Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam

3

Outline
Question

If we suspect a model is embedded with
backdoor(s), how do I mitigate the backdoor
attack?

Approaches

Input filtering

Input sanitization

Sanitizing the model

Certified defense

Input Filtering

4

5

Input Filtering
Training-time input filtering

If a training sample is determined to be
suspicious (e.g., having weird patches,
background patterns, or wrong labels),
remove it from the training dataset.

Inference-time input filtering

If a test sample is determined to be
suspicious, do not serve it.

Question

How do we determine whether a sample is to
be filtered, i.e., suspended to be poisoned?

Answer

We design or train a classifier to do that.

The classifier can be based on either the
sample itself or how it is represented in the
model trained on all training data.

Testing-Time Input Filtering
Approach: Anomaly Detection

An attacked sample is often abnormal in
some ways and thus we can prevent backdoor
attack by disallowing abnormal inputs.

How do we determine such an input is
abnormal? By using a (decision tree)
classifier*.

*“Neural Trojans”, ICCD 2017.

6

Examples

Anomaly Detection
Approach

To learn a classifier, we need abnormal
samples. How do craft abnormal samples?

The authors crafted abnormal samples
themselves.

If an input is deemed an anomaly, it is
discarded.

7

Example: Abnormal Samples

This work was done before BadNet and
thus these are mostly OOD samples.

Training-time Input Filtering
Approach

Poisoned sample and clean samples are
represented different by the model training
on all the training data.

If we perform PCA analysis of training
samples in each class (to see which part of a
sample is informative for the prediction), the
outliers are likely the poisoned sample.

8

Algorithm

1. Train a model using all training data.
2. Conduct PCA analysis on all training data

in each class.
3. Remove outliers in each class according

to the PCA analysis
4. Train a model using the remaining data.

Discussion
Do you think anomaly
detection would be effective
against the backdoor attacks
that we discussed last week?

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

9

BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Input Sanitization

10

11

Input Sanitization
Assumption

The performance of a backdoor is sensitive to
modification of the trigger, i.e., perturbing the
trigger often reduces the success rate of the
trigger significantly.

We can apply simple transformation such as
left-right flipping and padding after shrinking
to reduce the effectiveness of the trigger*.

*“Neural Trojans”, ICCD 2017.

Training-time input sanitization

Apply some form of transformation (hopefully
to disable the trigger) before using the sample
for training the neural network.

Inference-time input sanitization

Apply some form of transformation (hopefully
to disable the trigger) before feeding the test
sample into the neural network.

Do you think that backdoor triggers
are sensitive to perturbation?

Preprocessing through Autoencoder
Intuition

We use an autoencoder to encode and
decode the sample, and hopefully the trigger
is disabled somehow.

Approach

The training objective is to minimize the mean
square error between the input and output.
Here are some before/after samples.

During inference, an input is encoded and the
decoded sample is fed into the neural
network.

12

Exercise 1

13

Given week5/exercise1/sensitive.py, perturb the trigger in two different ways
and measure the change in attacking success rate.

● Change the trigger itself (e.g., increasing/reducing the size of the
white-patch)

● Shift the trigger to different positions

Discussion

14

BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Based on your understanding, consider
whether preprocessing through
autoencoder would be effective against
the range of backdoor attacks that we
discussed last week.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

STRIP
Assumption

If we modify a benign sample, the prediction
is likely to change.

If we modify an attacked sample, the
prediction is like to remain the same.

Example

We superimpose two images, one at the
bottom (b) and the other at the top (t).

15

What do you think of this assumption?

STRIP
If the distribution of the prediction remains more or less the same, the input is
considered to be attacked and discarded.

16

Discussion

17

BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Based on your understanding, consider
whether STRIP would be effective
against the range of backdoor attacks
that we discussed last week.

Fill the table.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

Februus

18

Observation

The logits (which can be regarded as the
extracted features) generated from benign
inputs and attacked inputs are very different.

*Februus: Input Purification Defense Against
Trojan Attacks on Deep Neural Network
Systems, ACSAC 2020

CIFAR-10 visualized using t-SNE

Februus

19

Assumption

In the presence of a trigger, some region will
contribute significantly to the prediction.

Approach

1. Identify the region which contributes the
most to the prediction using Grad-CAM
(a.k.a. a heat map).

2. Remove the region and apply GAN to
restore the removed region.

3. Feed the restored image into the neural
network.

Februus: Illustration

Discussion

21

BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Based on your understanding, consider
whether Februus would be effective
against the range of backdoor attacks
that we discussed last week.

Fill the table.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

Sanitizing The Model

22

Retraining
Intuition

Based on the phenomenon of catastrophic
forgetting, fine-tuning the given model with
some clean labeled data helps to eliminate
the backdoor.

*“Neural Trojans”, ICCD 2017.

Catastrophic Forgetting

“is the tendency of an artificial neural network
to completely and abruptly forget previously
learned information upon learning new
information.”

Example: A neural network trained to
recognize digit “1” and “2” will perform terribly
on classifying “1” and “2” after fine-tuned to
recognize “3” and “4”.

23

This works if the neural network is
retraining on OOD samples.

https://en.wikipedia.org/wiki/Artificial_neural_network

Retraining
Approach

Sample (x, y) from a distribution which is
supposed the same as the training dataset.

Train the given neural network with the cross
entropy loss.

Minθ LCE(θ, x, y)

*“Neural Trojans”, ICCD 2017.

Illustration

24

Exercise 2
Given week5/exericse2/badnet.pt which is a backdoored network,
week5/exericse2/retrain.py implements the retraining approach, measure the
accuracy and attack success rate after retraining.

Can you explain why this result is as what it is?

25

Neural Attention Distillation
High-level Idea*

To further enhance the effect of retraining
(i.e., forgetting about the backdoor) through
knowledge distillation.

*“Neural attention distillation: Erasing
backdoor triggers from deep neural
networks,” ICLR 2021.

Knowledge Distillation

It is proposed as a way to reduce model size.
It has the effect of pruning certain
unnecessary details.

26

Neural Attention Distillation
Approach

Given a model N (which is believed to be
backdoored) and a set of self-collected clean
samples,

1. finetune N with the clean samples to
obtain a model M.

2. take M as the teacher model and N as
the student model and apply knowledge
distillation.

Illustration

27

Neural Attention Distillation
Approach

The distillation is applied to optimize the
student model (i.e., the backdoored model)
with the objective of minimizing

● the cross entropy on the clean samples,
● and the difference between the teacher

model and student model.

Illustration

28

There are some details on how to
define the difference in the paper.

Exercise 3
Do you think NAD would be
effective against the backdoor
attacks that we discussed last
week?

Fill the table and explain why
it is or isn’t effective.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

29

BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Adversarial Unlearning Of Backdoors
High-level Idea*

Making retraining more effective in terms of
removing backdoors in the model.

The proposal is inspired by adversarial
training.

* “Adversarial unlearning of backdoors via
implicit hypergradient,” ICLR 2022.

Approach

Assume there is a small set of clean samples
(xi,yi) * n. Retrain the given model with the
following objective.

Minθ Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

where 𝛿 is intuitively an arbitrary trigger;
||𝛿||<ε defines the space of all possible
triggers.

30

How do we define ||𝛿||<ε in general?

Adversarial Unlearning Of Backdoors
Approach

Assume there is a small set of clean samples
(xi,yi) * n. Retrain the given model with the
following objective.

Minθ Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

where 𝛿 is intuitively an arbitrary trigger;
||𝛿||<ε defines the space of all possible
trigger.

Detail 1: ||𝛿||<ε can be defined based on,
for instance, L2-norm or other norms.

Detail 2: Note that the objective function is
un-targeted. This is because in general, we
don’t know what is the attack target.

Detail 3: Solving the inner max problem is
highly nontrivial. It is basically the problem of
generating (untargeted) universal adversarial
perturbation (UAP).

31

Adversarial Unlearning vs Adversarial Training
Adversarial Unlearning

Retrain the given model with the following
objective.

Minθ Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

Adversarial Training

Train a model with the following objective

Minθ MaxD(x,x’)<ε L(θ, x’, y)

Difference

Adversarial unlearning aims to minimize the
maximize effect on all samples, whereas
adversarial training focuses on one sample at
a time.

In adversarial training, we approximate
MaxD(x,x’)<ε L(θ, x’, y) through adversarial attack.
In the problem of approximating

Max||𝛿||<ε (ΣiL(θ, xi+𝛿, yi))/n

is much harder.

32

Discussion
Do you think adversarial
unlearning would be effective
against the backdoor attacks
that we discussed last week?

Fill the table.

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

33

BadNet

Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning

TrojanNet

Physical Attack

“Natural” Backdoor

Trigger Synthesis based Defense
High-level Idea

If we know what is the backdoor trigger, we
can most certainly defend backdoors much
more effectively.

How do we synthesize the trigger then?

34

Example

If we know what is the trigger,

● we can simply discard those
trigger-containing input either during
training or testing;

● we can remove the trigger and restore
the image during testing;

● we can precisely remove the backdoor
through retraining or unlearning.

35

Neural Cleanse
Overall Approach

Given a neural network N, it aims
to provide an end-to-end solution
for the problem.

1. Detecting backdoor
2. Synthesizing the trigger
3. Removing backdoor

*Neural Cleanse: Identifying and
Mitigating Backdoor Attacks in
Neural Networks, S&P 2019.

High-level Intuition

Backdoors are shortcuts between classes.

36

Neural Cleanse
Approach

1. Detecting backdoor

For each label yt, generate a minimal
trigger 𝛿t through optimization which
changes the label of any sample to yt;

If there exists one trigger 𝛿t which is
significantly smaller (e.g., in terms of
number of pixels or character changes)
than the rest, there is a backdoor with
target yt.

How to generate the minimal trigger?

A generic trigger is defined as:

x’ = x + ɑ*𝛿

Solve the following optimization problem for
all x in a set of clean samples.

minɑ,𝛿 L(θ, N(x+ɑ*𝛿), yt)+𝜆*|ɑ|

Do you think step 1 is reasonable?

37

Neural Cleanse
How to detect triggers that are
significantly smaller?

Using the Median Absolute Deviation (MAD).

Given x1, x2, ..., xn,

xm = median of x1, x2, ..., xn

MAD = median(|xi-xm|)

Anomaly index of xi = |xi-xm|/MAD

if xi is small with anomaly index > 2, infected.

Example

Data: (1, 1, 2, 2, 4, 6, 9)

Median: 2

Absolute Deviation: (1, 1, 0, 0, 2, 4, 7)

MAD: 1 (because the sorted absolute
deviations are (0, 0, 1, 1, 2, 4, 7)).

Anomaly index of 6: |6-2|/1 which 4.

38

Neural Cleanse
Approach

2. Synthesizing trigger

The 𝛿t identify in the first step is the
trigger and the target is yt.

We can note the patterns of neuron
activation (top 1% of the logits layer) in
the presence of the trigger and filter
inputs accordingly.

Examples

Notice how the synthesized trigger
is different and has smaller norm?

39

Neural Cleanse
Approach

3. Removing backdoor

One idea is to disable neurons (at the
logits-layer) that are most activated in
the presence of the trigger.

The other is neural unlearning, i.e.,
finetuning with samples “stamped” with
the trigger and the correct label.

Examples

Ideally, if the trigger is perfect, retrain with the
following.

Label: 2 7Label:7 Label: 2 7

40

Neural Cleanse: Performance
Experiments against BadNet and Trojaning attack.

Discussion
Do you think Neural Cleanse
would be effective against the
backdoor attacks that we
discussed last week?

Fill the table

Most effective: ⭐⭐⭐⭐⭐

Least effective: ⭐

41

BadNet ⭐⭐⭐⭐⭐
Invisible Backdoor Attacks

Semantic backdoor

Reflection Backdoor

Clean-label invisible attack

Trojaning ⭐⭐⭐⭐⭐
TrojanNet

Physical Attack

“Natural” Backdoor

Certified Defense

42

Certified Defense

43

Question

All the above-discussed approaches are
considered heuristics, i.e., they have decent
performance in some settings but they don’t
provide any formal guarantee.

How to certify that a neural network is free of
backdoors?

Answer

There are a few initial attempts and a lot are
to be done yet.

● Verifying backdoor-freeness*
● Certified backdoor-freeness through

randomized smoothing

*“Verifying Neural Networks Against Backdoor
Attacks“, CAV 2022

Verifying Backdoor-Freeness
Problem 1

Given a neural network N, a set of images X, a
target yt, and a maximum set of trigger pixels,
the problem is to show that there does not
exist a backdoor trigger 𝛿 such that N(x+𝛿) = yt
for all x in X.

44

Trump

This problem assumes that triggers must be
100% effective on X.

Verifying Backdoor-Freeness: Part 1
The problem

0 <= trg <= 255 &&

N([trg, 5]) = 1 &&

N([trg, 10]) = 1

Toy Example

X has two pictures, each with two pixels.

{[3,5], [1,10]}

There are two labels {0, 1}. The target is 1.

Trigger is a value for the first pixel.

45

We can solve the constraint if we can
abstract the neural network.

Example

ReLU(x) = if (x>= 0) { x } else { 0 }

Abstract Interpretation
High-level idea

Abstract each function using a simpler one
(such as a linear one).

46

We have seen this in verifying robustness.

Constraint Solving
The problem

0 <= trg <= 255 &&

N([trg, 5]) = 1 &&

N([trg, 10]) = 1

Toy Example

X has two pictures, each with two pixels.

{[3,5], [1,10]}

There are two labels {0, 1}. The target is 1.

Trigger is a value for the first pixel.

47

N([trg, 5]) and N([trg, 10]) are replaced with
some abstract linear constraints. The
problem is then solved using a linear solver.

If UNSAT, there is no backdoor.

Verifying Backdoor-Freeness: Performance

48

Experiment***

MNIST

Feed-forward neural
network

***“Verifying Neural
Networks Against
Backdoor Attacks“, CAV
2022.

Exercise 4
Applying the
above-discussed
approach to verify
whether there exists a
backdoor for inputs
[-1,0], [0,1], and [1,-1],
where the trigger is
restricted to change i2
with the range of [-1,1]
and the target is 0.

49

Label 1

Label 0

Hint: refer to Slide 49 of week 2

Verifying Backdoor-Freeness
Problem 2

Given a neural network N, a target yt,
and a maximum set of trigger pixels, the
problem is to show that there does not
exist a backdoor trigger 𝛿 with a success
rate of at least Pr.

This is more interesting since backdoors
in practice are hardly perfect.

50

Verifying Backdoor-Freeness: Part 2

51

There is a backdoor attack with success rate
at least Pr.

Given K random images, the probability of
having a backdoor attack is no less than PrK.

Given K random images, the probability of
not having a backdoor attack is no more
than 1-PrK.

Given K random images, the probability
of not having a backdoor attack is more
than 1-PrK.

Given K random images, the probability of
having a backdoor attack is no more than
PrK.

There is no a backdoor attack with success
rate at least Pr.

Verifying Backdoor-Freeness: Part 2

52

Pick K random images

Verify Problem 1 on the K images

No attack

Verified Falsified

Yes attack
Success Rate >=
Pr on all images

Sufficient evidence
accumulated

Otherwise Otherwise

Verifying Backdoor-Freeness: Performance

53

Experiment***

MNIST

Feed-forward neural
network

***“Verifying Neural
Networks Against
Backdoor Attacks“, CAV
2022.

Randomized Smoothing for Backdoor-Freeness
Recall randomized smoothing

During training, add a noise layer (to induce
noises following a Gaussian distribution).

During inference, query the model many
times and output the most frequent
prediction.

Randomized smoothing allows us to certify
robustness to some extent.

Randomized smoothing can be used to
certify backdoor-freeness

If we certify that N is robust given x, i.e., N(x)
remains the same within certain radius of x,
we can conclude that any backdoor trigger
within the radius is ineffective, i.e., we certify
the backdoor-freeness.

Only this time we need a much bigger radius!

54

How practical is to define the radius for a
backdoor attack?

Randomized Smoothing
Algorithm

During training, add a noise
layer (to induce noises
following a Gaussian
distribution).

During inference, query the
model many times and
output the most frequent
prediction.

N(x) = arg maxc P(N(x+δ)=c)

55

The blue parts are from ordinary training;
the red parts are the new ones.

Randomized Smoothing for Backdoor-Freeness
Experiments***

Models: MNIST and CIFAR-10

Triggers are assumed to be no larger than:
5*5 for MNIST and 10*10 for CIFAR-10.

Backdoor attack is assume to data poisoning
(i.e., BadNet).

***“Certified robustness of nearest neighbors
against data poisoning attacks,” AAAI 2022.

Performance

MNIST: Certified accuracy drops to about 70%
assuming 500 training samples are poisoned.

CIFAR-10: Certified accuracy drops to about
30% assuming 200 training samples are
poisoned.

56

There is still some ways from being
practically relevant.

Conclusion
Existing input filtering and sanitization, and model sanitization approaches
have decent performance against common backdoor attacks.

There are adaptive attacks that might comprise such defense still.

Certified defense is nowhere near practically useful yet.

57

Assignment Exercise 4
Submit a zip file containing a report (word, or pdf) and programs showing your
working of Exercise 1-4 to elearn (under Assignments and Exercise 4) by Sep
26, 2022 11:59 PM.

58

Project Proposal
By Sep 25, submit your project proposal on

● which project to tackle on (note: if it is the default project, make it brief;
otherwise, explain properly what is the background and what is the
problem to be addressed)

● what is the overall approach (note: the approach certainly can change
over time; do have one backup approach here though)

Submit a maximal 5-page report with a timeline for completing the project.
This report counts 10% of the project.

59

60

Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam

