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Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam
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Privacy
Privacy is ever more a relevant issue.

Machine learning relies on big data, which can 
be leaked directly or indirectly and cause 
privacy issues. 



Outline 
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Avoiding data breaches

Avoiding indirect information exposure

● Mitigating membership inference attacks
● Mitigating property inference attacks 
● Mitigating model extraction attacks
● Mitigating model inversion attacks
● Mitigating model memorization attacks



Avoiding Dataset breaches
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Apply your usual data protection 
practices. In addition, there are some 
techniques that are dedicated to machine 
learning. 

Example 1: 

Homomorphic encryption is a form of 
encryption with an additional evaluation 
capability for computing over encrypted 
data without access to the secret key. The 
result of such a computation remains 
encrypted. Homomorphic encryption is very slow.



Avoiding Dataset breaches: Examples
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Example 2:

Federated learning (also known as 
collaborative learning) is a machine 
learning technique that trains an 
algorithm across multiple 
decentralized edge devices or servers 
holding local data samples, without 
exchanging them.  

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Server_(computing)


Discussion
If we apply homomorphic encryption and/or federated learning, are we 
immune from those indirect information exposures such as MIA?
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Mitigating MIA
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Confidence Score Masking
High-level idea

Many of the MIA relies on information 
provided by the confidence score (e.g., 
classifier-based MIA and Prediction Loss 
Based MIA). Maybe we simply hide the 
confidence score in some ways?

This way, the accuracy of the model is 
unaffected. 

Approaches

The following masking schemes have 
proposed and experimented.

● Provide the label only
● Provide the top-K confidence only 
● Round the confidence to a limited 

precision
● Add noise to the confidence before 

providing the confidence



Confidence Score Masking
Experimental Setup*

Attack: Classifier-based MIA

Defense: confidence score masking 
by providing labels only or limited 
confidence

Models: the purchase and Texas 
hospital-stay datasets (100 classes)

*Membership Inference Attacks Against 
Machine Learning Models, S&P 2017.
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Confidence Score Masking
High-level idea*

Add adversarial noise to the confidence score 
so that classifier-based MIA is likely to fail.

*Memguard: Defending against black-box 
membership inference attacks via adversarial 
examples. CCS 2019.
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Approach

Train a classifier X for classifier-based MIA

Given a confidence score vector, find some 
noise (through adversarial perturbation) so 
that X’s accuracy is reduced to a random choice 
while the model N’s accuracy is maintained. 

Add the noise to the confidence score vector 
and return it to the user.



Confidence Score Masking
Approach 

The noise is identified through optimization 
with the following objectives.

● The accuracy of MIA classifier is reduced 
to a random guess.

● The label remains the same.
● The confidence score distortion is 

minimized. 
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Exercise 1

Question 1: Why do we want to minimize the 
confidence score distortion?

Question 2: Why don’t we reduce the 
classifier’s  accuracy to nearly 0 (which is quite 
possible as you have seen in Week 2)?

Question 3: This method generates the noise 
based on a classifier which is likely different 
from the attacker’s classifier. Why is it that it 
may still work?  



Confidence Score Masking: Performance
Against classifier-based MIA
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NN-AT: neural network based MIA with adversarial 
training; NN-R: round confidence before NN-based MIA



Confidence Score Masking: Performance
Against metric-based MIA*

*Systematic Evaluation of Privacy Risks of Machine Learning Models, USENIX 2021
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Classifier-based MIA Four Metric-based MIA



Exercise 2
Execute week9/exercise2/mentr.py to evaluate the performance of your 
mentr MIA attacker implemented last week (Week 5, exercise 5) if the top 3 
confidences are provided by the model (i.e., the rest are masked off as 0.0). 

1. Fix the bug
2. Modify the code so that only the top 2 and top 1 are provided by the 

model; and evaluate the performance of the mentr MIA attack.
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Regularization 
High-level idea

As we discussed, overfitting may be 
responsible for the effectiveness of MIA.

Techniques that aim to reduce overfitting thus 
could potentially help mitigate the risk of MIA.
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What is overfitting?

Overfitting occurs when a statistical model fits 
exactly against its training data.

Let D be the actual data distribution. Dr and 
De be the data distribution of the training and 
testing data. (Ideally, Dr and De and D are 
similar if not identical.)

Overfitting means that the model is trained to 
work optimally conditioned on Dr.

How do we avoid overfitting then?



Regularization 
High-level idea

We adopt different heuristics to make sure 
that the learned model is simple (i.e., the 
simpler a model is, the more likely it works 
well for De), based on the principle of Occam's 
razor.
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Approaches: Regularization 

L2-norm regularization
Dropout
Data augmentation
Model stacking
Early stopping
Label smoothing
…

A simpler model is likely to work 
for more data distributions. 



Regularization 
Data Augmentation

Add additional training samples obtained 
through various transformations, so that the 
model is forced not to learn from certain 
features.

Model Stacking

Use multiple models so that only features 
common in different models contribute.  
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L2 Regularization

Training with the following objective:

     minimize (loss + 𝜆*(w1
2 +w2

2+w3
2+...+wn

2))

Dropout

Randomly drop out some percentage of 
neurons during training to simplify the model 
(and avoid overfitting). 

We aim for models with fewer 
contributing neurons.

We aim for models with fewer 
contributing features.



Regularization 
Early Stopping

Stop training as soon as the generalization 
error (i.e., the difference between the 
accuracy on the training set and a holdout 
valuation set) increase. 

Label Smoothing

Label Smoothing regularizes a model based 
on a softmax with k output values by 
replacing the hard 0 and 1 classification 
targets with targets of ϵ/(k−1) and 1−ϵ 
respectively.
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Don’t be too sure.

https://paperswithcode.com/method/softmax
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Regularization 
The good news*

Traditional regularization indeed 
seems to reduce the risk of MIA.

The bad news

Regularization may also reduce the 
model accuracy.

*Membership Inference Attacks 
Against Machine Learning Models, 
S&P 2017. There seems to be a sweet spot?



Adversarial Regularization 
High-level idea*

We have to two opposing objectives.

● Produce an accurate model, i.e., use as 
much information as possible;

● Produce a private model, i.e., use as 
little (sensitive) information as possible. 

We train a model to satisfy both objectives. 

*Machine Learning with Membership Privacy 
using Adversarial Regularization, CCS 2019

Approach

Train the model by solving the following 
min-max optimization problem. 

minN (L(N) + 𝜆*maxM G(M))

where N is the model to be trained; M is the 
classifier used in a classifier-based MIA; maxM 
G(M) is the maximum gain of the 
classifier-based MIA.
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GAN?
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Adversarial Regularization: Performance 
Experiments

Dataset: Purchase100

Attack: classifier-based MIA

Observation: it provides privacy in the price of 
model accuracy. 

Is it worth the effort?
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Adversarial Regularization: Performance 
Experiments*

Dataset: Texas100

Attack: metric-based MIA

Observation: Its privacy protection is nearly as 
good as simple strategies such as early 
stopping. 

*Systematic Evaluation of Privacy Risks of 
Machine Learning Models, USENIX 2021 



Knowledge Distillation
High-level idea*

Through knowledge distillation, train a 
student model without using the original 
training data.

Naturally, the risk of leaking information on 
the training data is reduced. 

*Membership Privacy for Machine Learning 
Models Through Knowledge Transfer, AAAI 2021.
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Knowledge Distillation 

It is proposed as a way to reduce model size. 
It has the effect of pruning certain 
unnecessary details. 



Approach

Step 1: Train an unprotected model N as 
per normal 

Step 2: Generate a new training dataset 

● Step 2.1: Identify suitable data from 
a set of unlabeled data

● Step 2.2: Label the identified data 
using N

Step 3: Train a protected model M using 
the new training dataset

25

Knowledge Distillation 



Step 2.1: Identify suitable data from a 
set of unlabeled data

The identified data should (1) be far away 
from the private training date; (2) have 
low entropy. 
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Knowledge Distillation 

Can you intuitively explain why 
these are good ideas?



27

Knowledge Distillation: Performance
Experiments

Dataset: Purchase100, Texas100, 
CIFAR100 and CIFAR10

Attacks: classifier-based MIA, and 
metric-based MIA

Generalization error: Accuracy 
of testing - Accuracy of training
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Knowledge Distillation: Performance

Knowledge distillation



Differential Privacy
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High-level idea*

Add noise in a controlled manner such that 
we have some guarantee on the level of 
privacy that can be achieved.

*Deep learning with differential privacy, CCS 
2016.

Questions

How do we define or measure privacy?

How do we add noise in a privacy-preserving 
way?

How do we add noise into deep learning?
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Differential Privacy
Defining Privacy

Let d be an arbitrary individual. 

Let D be an arbitrary dataset.

Let E = D ⋃ {d}. 

Let M be some way of obtaining information 
from a dataset.

We say M satisfies privacy if M(D)  and M(E) 
are very similar. 

Example

Trained on D, ND predicts Jack has cancer with 
probability 0.55. 

Trained on E, NE predicts Jack has cancer with 
probability 0.57. 

We probably can’t tell whether “Jack has 
cancer” is in E. 

What if NE predicts Jack has cancer 
with probability 0.8?
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Differential Privacy
Defining Privacy 

We quantify the privacy loss as follows. 

log (Pr(M(E)=r)/Pr(M(D)=r))

We say that M satisfies 𝜀-differential privacy if 
the privacy loss for any pair of D and E (that 
differ by one member) and any outcome r is 
bounded by some 𝜀. 

Example

From 0.55 to 0.57, the privacy loss is

log(0.57/0.55) = 0.0357

From 0.55 to 0.8, the privacy loss is

log(0.8/0.55) = 0.375

What if NE predicts Jack has cancer 
with probability 0.2?
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Differential Privacy for Deep Learning
Defining Privacy 

We say that a deep learning model M 
satisfies (𝜀, 𝛿)-differential privacy if 

Pr(M(D)=r) <= e𝜀Pr(M(E)=r) + 𝛿 

where 𝜀 is the privacy budget and 𝛿 is 
a failure probability (which is there 
only to make the formal proof easier). 

Intuitively, privacy means that the two 
distributions with or without certain data are 
close to each other.
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Differential Privacy for Deep Learning
Question

How do we achieve (𝜀, 𝛿)-differential 
privacy then?

Simple Answer

By systematically adding noises 
during the training process.

The real answer

The algorithm is available in 
PyTorch.



Differential Privacy: Performance
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MNIST

Smaller eps means more privacy and thus larger noise.



Differential Privacy: Performance
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Systematic evaluation* (𝜀, 𝛿) = (10, 10-5); loss = 1 − withDP/withoutDP

*Effects of differential privacy and data skewness on membership 
inference vulnerability. TPS-ISA 2019.

Is the loss acceptable?



Exercise 3
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week9/exercise3/dp.py is a program which applies differential privacy when 
training a MNIST model. Vary the value of 𝜀 (such as 10, 1, 0.1) and 𝛿 (0.1, 0.01, 
0.001) and see how it affects the test accuracy and the attack success rate of 
the mentr-based MIA attack.

𝜀 𝛿 test accuracy MIA accuracy

NA NA

10 0.1

10 0.01



Mitigating Property Inference Attacks
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Mitigating Property Inference Attack
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Causes of Property Inference Attacks

Property inference is possible even with 
well-generalized models.

We have little information about what makes 
them possible and under which 
circumstances they appear to be effective.

Results*

Differential privacy does not seem to offer 
protection against property inference attacks.

Regularization had an adverse effect and 
actually made the attacks stronger.

*Exploiting Unintended Feature Leakage in 
Collaborative Learning, S&P 2019.

Any idea how it might be the case?



Mitigating Model Extraction Attacks
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Mitigating Model Extraction Attacks
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High-level idea

With a sufficient number of queries, model 
extraction attacks are just like model learning, 
i.e., there is no preventing it.

The goal is thus to make it harder to “learn”. 

Approaches

Do not provide an API. 

Provide the label only. 

Introduce noise in the prediction confidence. 

Refuse to answer weird queries.

Limit the number of queries from malicious 
users.



Detecting Model Extraction
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High-level idea*

Detect those queries which are likely designed 
for model extraction and prevent them.

The detection is based on the assumption 
that model queries that try to explore 
decision boundaries will have a different 
distribution than the normal ones.

*PRADA: protecting against DNN model stealing 
attacks. EuroS&P, 2019.

Attacking queries vs normal queries 

Normal queries: The distance between two 
randomly selected points from a totally 
bounded space (e.g., a cube) often fits a 
normal (Gaussian) distribution. Normal 
queries thus form a normal (Gaussian) 
distribution. 

Attacking queries: They are designed to 
extract maximal information and thus more 
likely not a normal distribution. 



Detecting Model Extraction
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Normal queries vs model extracting queries

The minimum L2 distance between a 
query and preceding queries.



Detecting Model Extraction
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Question

How do we test the normality of the queries 
then?

Answer

The Shapiro-Wilk test

Approach 

Wait until a client a sufficient number of 
queries (e.g., 100 times).

Optionally remove outliers.

Compute W according to the Shapiro-Wilk 
test.

Compare W with a threshold. 

https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test


Shapiro-Wilk Test
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week9/shapiro.py



Discussion
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What would you do to prevent your model from being stolen? 



Mitigating Model Extraction: Watermarking
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High-level idea*

Train the model with some watermark (a.k.a. 
backdoor).

The extracted model may contain the 
backdoor.

We can then prove that the attacker stole the 
model.

*Thieves on Sesame Street! Model Extraction of 
BERT-based APIs, ICLR 2020.

Discussion

What do you think of this defense?

With your knowledge on backdoor attacks, 
will it work? And how would you counter this 
defense?

Does it achieve the goal?



Mitigating Model Inversion Attacks
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Mitigating Model Inversion Attacks
Causes of model inversion attacks

Overfitting may be a cause of model inversion 
attacks.

Lack of data variety may be a reason as well.

Out-of-distribution samples may be more 
vulnerable to model inversion.   

Approaches 

Methods that prevent overfitting (refer to 
Slide 16)

Differential privacy (refer to Slide 29)

Provide less informative prediction (i.e., 
confidence score masking, refer to Slide 9)



Mitigating Model Inversion Attacks
Experimental Setup

Insert canaries such as “My social security 
number is 078-05-1120.” into a training 
dataset.

Train models such as LSTM. 

Evaluate the effect of methods on preventing 
memorization. 

Results

Traditional regulation, e.g., drop out and 
quantization: the canaries can still be 
extracted by the attacker.

Differential Privacy: Even with a 
vanishingly-small amount of noise, and values 
of ε that offer no meaningful theoretical 
guarantees, training with differential privacy 
prevents the attacker from extracting the 
canaries effectively. 



Mitigating Model Memorization Attack
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Mitigating Model Memorization Attack
Recall: Black-box setting

Let D be the data to be memorized. Assume 
there are n classes.

For every log2n bits of D, generate a random 
input (e.g., images with one non-zero pixel 
value or random sentence) using a 
deterministic algorithm and label it with the 
i-th class (where i is the value of the log2n 
bits). 

Train the model with the training data and the 
additional data. 
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Mitigation 

Use an anomaly detection algorithm to detect 
abnormal samples (either during training or 
inference) and filter them.

 

What else you can think of?



Exercise 4
For each of the following white-box model memorization attacks, suggest a 
way of mitigating them.

● Least significant bit encoding: use the least significant bits of each 
parameter to memorize the data

● Correlated value encoding: add a loss to encourage “memorizing” data 
during training

● Sign encoding: use the sign of each parameter to memorize the data
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Conclusion
Apply standard data protection practices to prevent direct data breaches. 

Knowledge distillation is perhaps the most effective approach for mitigating 
MIA.

Apply differential privacy with some relatively large 𝜀.

Differential privacy often brings high level of accuracy drop if you would prefer 
to have some theoretical guarantee. 
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Exercise 5
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Conduct a model extraction attack on the model week9/exercise5/MNIST.pt. 
You can use the 10% of the original train set to form your queries. Compare 
the performance with the following three settings.

1. Only the label is provided (finish in-class if you can);
2. The full confidence is provided;
3. the confidence is rounded off to 2 decimal places;

Evaluate the performance of the attack using the fidelity (the rate of 
agreement between the extracted model and the original model) and test 
accuracy. 
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Aug 23 - Week 1: 7-10 Introduction

Aug 30 - Week 2: 7-10 AI Robustness Exercise 1

Sep 06 - Week 3: 7-10 Improving AI Robustness Exercise 2

Sep 13 - Week 4: 7-10 AI Backdoors Exercise 3

Sep 20 - Week 5: 7-10 Mitigating AI Backdoors Exercise 4; Project Proposal

Sep 27 - Week 6: 7-10 AI Fairness Exercise 5

Oct 11 - Week 7: 7-10 Improving AI Fairness Exercise 6

Oct 18 - Week 8: 7-10 AI Privacy Exercise 7

Oct 25 - Week 9: 7-10 Improving AI Privacy Exercise 8

Nov 01 - Week 10: 7-10 AI Interpretability Project Due

Nov 08 - Week 11: 1-3 End-of-Term Exam


